Hydroxysafflor yellow A exerts antioxidant effects in a rat model of traumatic brain injury

نویسندگان

  • Yang Wang
  • Chunhu Zhang
  • Weijun Peng
  • Zian Xia
  • Pingping Gan
  • Wei Huang
  • Yafei Shi
  • Rong Fan
چکیده

Free radical-induced oxidative damage occurs rapidly and is of primary importance during the secondary pathophysiological cascades of traumatic brain injury (TBI). Hydroxysafflor yellow A (HSYA) is a constituent of the flower petals of Carthamus tinctorius (safflower) and may represent a potential therapeutic strategy to improve outcomes following TBI. The present study aimed to identify HSYA in the brain tissues of rats exposed to TBI to determine its absorption and to investigate the underlying effects of HSYA on antioxidant enzymes in the brain tissues of TBI rats. To determine the absorption of HSYA for the investigation of the underlying antioxidant effects of HSYA in TBI, the presence of HSYA in the brain tissues of the TBI rats was identified using an ultra performance liquid chromatography‑tandem mass spectrometry method. Subsequently, the state of oxidative stress in the TBI rat model following the administration of HSYA was investigated by determining the levels of antioxidant enzymes, including superoxide dismutase (SOD), malondialdehyde (MDA) and catalase (CAT), and the ratio of glutathione (GSH)/glutathione disulfide (GSSG). The data obtained demonstrated that HSYA was absorbed in the brain tissues of the TBI rats. HSYA increased the activities of SOD and CAT, the level of GSH and the GSH/GSSG ratio. However, HSYA concomitantly decreased the levels of MDA and GSSG. These preliminary data suggest that HSYA has the potential to be utilized as a neuroprotective drug in cases of TBI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroprotective effects of gallic acid in a rat model of traumatic brain injury: behavioral, electrophysiological and molecular studies

Objective(s): Traumatic brain injury (TBI) is one of the main causes of intellectual and cognitive disabilities. Clinically, it is essential to limit the development of cognitive impairment after TBI.  In the present study, the neuroprotective effects of gallic acid (GA) on neurological score, memory, long-term potentiation (LTP) from hippocampal dentate gyrus (hDG), brain lipid peroxidation an...

متن کامل

The Effects of Estrogen Receptors' Antagonist on Brain Edema, Intracranial Pressure and Neurological Outcomes after Traumatic Brain Injury in Rat

Background: In previous studies, the neuroprotective effect of 17&beta-estradiol in diffuse traumatic brain injury has been shown. This study used ICI 182,780, a non-selective estrogen receptor antagonist, to test the hypothesis that the neuroprotective effect of 17&beta-estradiol in traumatic brain injury is mediated by the estrogen receptors. Methods: The ovariectomized rats were divided into...

متن کامل

W4: A New Animal Model of Traumatic Brain Injury in Rat

لطفاً به چکیده انگلیسی مراجعه شود.

متن کامل

P34: Berberin Exerts Neuroprotective Effects by Modulating Pro and Anti-Inflammatory Cytokines in Rat Model of MCAO

Many complicated mechanisms are involved in brain ischemia and the role of inflammatory factors in the progression of post-ischemic injury is inevitable. In present study, anti-inflammatory effect of berberine has been investigated in reperfusion injury after acute ischemic stroke. Male Wistar rats weighing 250-270 gr were randomly divided into four cohorts: healthy rats (control, n=20), sham-o...

متن کامل

Therapeutic effects of ellagic acid on memory, hippocampus electrophysiology deficits, and elevated TNF-α level in brain due to experimental traumatic brain injury

Objective(s): Cognitive defects such as learning and memory impairment are amongst the most repetitious sequelae after sever and moderate traumatic brain injury (TBI). It was suggested that ellagic acid (EA), an innate phenol product, display neuroprotective properties against oxidative and inflammatory damages after brain injury. The object of the current study was therapeutic properties of EA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2016